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In spite of widespread adoption, there is mixed evidence as to
whether adopting genetically modified (GM) crops increases
farm welfare. One possible reason for widespread adoption is
the labor savings. Using a treatment effect model we estimate
the time savings associated with adopting a GM crop. We find a
significant savings in household labor for soybeans, but not for
other crops.
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Introduction

Genetically modified organisms (GMOs) have been
used in crop production for more than a decade. Accord-
ing to Brookes and Barfoot (2005), the first genetically-
modified (GM) crop was the tomato in 1994, followed
by GM soybeans. Currently, the most common GMOs in
agricultural crops can be classified into two groups: her-
bicide-resistant (HR) and insect-resistant varieties of
corn, cotton, and soybeans. This technology was not
developed via conventional crop-breeding methods.
Instead, a trait that is foreign to the crop was inserted
into its genome. Roundup Ready soybeans are resistant
to the herbicide glyphosate, which Monsanto markets
under the brand name Roundup. Monsanto developed
the Roundup Ready HR trait to serve as a complemen-
tary input to Roundup (Just & Hueth, 1993). Glyphosate
resistance has also been inserted into corn and cotton.
Insect resistance is achieved by inserting a gene from
the bacteria Bacillus thuringiensis (Bt), which creates a
toxin that affects Lepidoptera larvae. Currently the Bt
trait has been inserted into corn and cotton to control the
European Corn Borer, the Corn Rootworm, the Cotton
Bollworm, the Pink Bollworm, the Asian Bollworm,
and the Tobacco Budworm.

GMOs are controversial. With the emergence of gly-
phosate-resistant weeds (Gardner & Nelson, 2008) and
the recent accidental release of unapproved GM rice
(Endres & Gardner, 2006), the debate over GM crops is
not over. The European Union (EU) has a significant
aversion to GMOs. According to the US Foreign Agri-
cultural Service (FAS), “biotechnology continues to be
more of a political than a scientific issue in Europe and
the prospects for improvement remain dim” (US
Department of Agriculture [USDA], FAS, n.d., “EU
Policy section™). China, another major player in global
agricultural trade, also limits GMO production. GMO
soybeans, for example, are imported but not grown in
China (GMO Compass, 2009). Therefore, it is prudent

to continually reassess the economic, environmental,
and regulatory issues regarding GM crops. There have
been many studies on the welfare impacts of GM crops
in US agriculture. In their review of the economics liter-
ature, Marra, Pardy, and Alston (2002) broadly con-
cluded that GM crops are profitable for US farmers.
However, some evidence suggests that GM crops may
not be profitable (Bullock & Nitsi, 2001; Fernandez-
Cornejo, Klotz-Ingram, & Jans, 2002). Our objective is
to investigate the welfare impacts of GM crops to deter-
mine if GM crops are, in fact, profitable for US farmers.
If not, then why would farmers adopt a crop that is not
profitable? Specifically, we assess whether labor and
management savings might be an overlooked benefit of
adopting GM crops.

Literature Review

The literature on the economic effects of GMOs is vast,
with some ex-ante analysis appearing almost a decade
before the first GMOs appeared in farmer fields, such as
Hueth and Just (1987). A comprehensive review of the
literature concerning the welfare impacts of the first
generation of GM crops can be found in Marra (2001)
and Marra et al. (2002). The authors reached several
broad conclusions regarding the literature on the current
generation of GM field crops. Bt cotton is likely to be
profitable in the cotton belt and reduce pesticide use.
Adopting Bt corn should provide a small yield increase,
and in some cases adopting causes significant increases
in profit. For HR soybeans, they conclude that cost sav-
ings should offset any revenue loss due to yield drag.
These conclusions seem plausible. Several effects could
induce a welfare gain. Carpenter and Gianessi (1999)
list four advantages of HR crops. (1) HR technology
leads the farmer to substitute relatively less-expensive
glyphosate for other herbicides. (2) Farmers realize a
change in the shadow price of labor and management.*



(3) Due to glyphosate’s effectiveness at killing larger
weeds, weather-induced spraying delays do not signifi-
cantly affect weed control. (4) When farmers switch to
HR technology, substitution effects lead to a decrease in
the price of alternative herbicides. The widespread
adoption of GM crops may be evidence of a welfare
gain. In 2005, herbicide-resistant crops made up 87%
and 60% of US soybean and cotton acreage, respec-
tively, while 35% of the corn acreage and 60% of cotton
acres were insect resistant (Fernandez-Cornejo & Cas-
well, 2005). Bernard, Pesek, and Fan (2004) found that
farms in Delaware had yield increases and decreases in
weed control costs when they adopted HR soybeans. So,
it would seem that adopting this technology results in a
welfare gain for farmers. But, as noted above, some
studies do not support this conclusion.

Marra (2001) and Marra et al.’s (2002) evidence
concerning the profitability of Bt cotton is overwhelm-
ing. All of the 47 studies that were compiled indicated
that Bt cotton is profitable. Only two HR cotton studies
were compiled, and both indicated that the technology
was profitable, as did two studies where these two traits
were “stacked.” However, only two GM corn and soy-
bean papers were included, thus more study is required
to develop an assessment of the profitability of these
GM crops.

Fernandez-Cornejo et al. (2002) used US Depart-
ment of Agriculture’s Agricultural Resource Manage-
ment Survey (ARMS) data and concluded that HR
soybean adoption did not have a statistically significant
effect on farmer profit. The Fernandez-Cornejo et al.
study made use of a flexible functional form to estimate
a profit function and corrected for endogeneity using an
instrumental variables method. Even though the study
did not find a profit impact, they did find a small posi-
tive yield impact. Bullock and Nitisi’s (2001) study,
which used a cost-minimizing simulation, found that
GM soybean farmers are less profitable than their con-
ventional counterparts. However, they did not take into
account the labor and management savings that arise
from convenience and timing factors, as these were not
observable variables. This leads to a puzzling conclu-
sion; it is uncertain whether HR soybeans are more prof-
itable than conventional soybeans, but almost every
farmer uses the technology. Perhaps the research com-
munity has been unable to measure an important com-
ponent of farmers’ welfare. Bernard et al. (2004), as

1. Farm labor and management has no market price; the price
of a non-market good is its shadow price.
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mentioned above, did find a positive impact in Dela-
ware. However, they pointed out that Delaware soybean
farms are larger than the national average, which may
have biased their results.

One overlooked component of farmer welfare might
be the time and management savings associated with
these crops. In this study, we attempt to measure this
impact. Carpenter and Gianessi (1999) cite that the pri-
mary reason for adopting HR soybeans is simplicity of
weed control and that glyphosate can control a wide
range of weeds without harming the HR crop. In other
words, HR soybeans require less management. Addi-
tionally, Carpenter and Gianessi (1999, pp. 67) point out
that “Roundup Ready weed-control programs fit into
on-going trends towards postemergence weed control,
adoption of conservation tillage practices and narrow
row spacing.” Glyphosate can also Kill larger weeds
than other postemergence herbicides, and it has no
residual activity, thus it does not limit crop rotation pro-
grams. Fulton and Keyowski (1999) discussed the
importance of management and cropping practices in
their analysis of HR canola in Australia. “The argument
that producers benefit if the relative price of growing
herbicide tolerant canola falls depends critically on the
belief that all farmers are identical in the agronomic fac-
tors they face, the management skills they possess, and
the technology they have adopted” (Fulton & Keyowski,
1999, pp. 86). In their theoretical model, the authors
showed how farmers who use a reduced-tillage cropping
practice might find it profitable to adopt HR canola
while those who use conventional tillage may not. Fer-
nandez-Cornejo, Hendricks, and Mishra (2005) made an
important advancement by explaining high adoption
rates for Roundup Ready soybeans in spite of the tech-
nology’s apparent inability to increase farm profits.
Using a household production framework, they found a
positive relationship between HR soybean adoption and
off-farm income. Their result suggests that adopting HR
soybeans can free up resources for alternative uses with-
out decreasing on-farm income. In addition, the result
highlights the importance of properly modeling farm
production; farms are multi-output producers that gener-
ate off-farm income as well as commodity-derived on-
farm income.

Using field-level data from the 1997 ARMS survey,
McBride and Brooks (2000) compared four soybean-
growing regions and found that HR soybeans out-
yielded conventional soybeans, except in the Delta
Region. They also found that seed cost averaged $10 per
acre higher, and pesticide and cultivation costs averaged
$8-$12 lower than conventional soybeans. Based on a t-

Gardner, Nehring, & Nelson — Genetically Modified Crops and Household Labor Savings in US Crop Production



test they found no significant difference between per-
acre total production costs. Likewise, they did not find a
statistically significant difference in production cost for
HR cotton compared to conventional cotton, and they
found no significant difference in costs associated with
Bt cotton. McBride and Brooks’ (2000) results were
based on a simple comparison of unconditional means.
Unconditional means are an inappropriate tool for com-
parison because the estimates do not take into account
other observable characteristics. An example of this can
be found in Marra’s (2001) criticism of ARMS results.
If you present an average based on Farm A’s GM crop
and Farm B’s non-GM crop, the difference between the
estimates cannot be solely attributed to differences
between GM and non-GM crops.

Methods

If GM crops save labor and management then the intro-
duction of GM seed should decrease the demand for
these inputs. Due to data limitations, it is difficult to
measure the quantity or quality of management used on
a farm; hence, one can only look at how adopting a GM
crop affects on-farm labor usage. Farms are managed by
households that allocate labor between on- and off-farm
activities. Farms also hire labor, on either a full- or part-
time basis, or they may contract out on-farm activities
such as pesticide and fertilizer applications or harvest-
ing. We assume that “management” is a component of
the labor supplied to the farm from the farm household.
Therefore, by focusing on the labor supplied by the farm
household, we can more accurately measure the quantity
of management used on the farm. A reduction in house-
hold labor will reduce management. Because our goal is
to measure management as well as labor, we will
assume that management is a component of the labor
provided by the household, and we will focus our study
on household labor. We count all unpaid labor as house-
hold labor. This includes the operator, spouse, children,
and work performed by friends and relatives.

There is a well-developed set of literature on agri-
cultural household labor allocation between on- and off-
farm work. It finds its roots in Becker’s (1965) house-
hold production model and has been used to model US
agriculture. Following Fernandez-Cornejo et al. (2005),
one can write the household model in terms of an objec-
tive function.

Max U=U(q,Ll), 9=(12..G), (@

subject to the constraints
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Let U denote utility, and let g4 denote the quantity of
consumption good g with price py. Likewise, gq and pg
are the quantity and price of the qth agricultural output.
Excluding the family labor, denoted by an f subscript,
agricultural inputs and prices are x; and w; , respectively.
Labor supplied to off-farm enterprises and the off-farm
wage rate are denoted by I, and w, , respectively. Equa-
tion 3, which is assumed to hold with equality, states
that the amount of time spent in leisure (L) and in labor
(I, and I¢ ) is bound by the total amount of time avail-
able. Farm profit is defined as the return to on-farm
labor (Equation 4). The model also assumes that there is
minimum off-farm labor requirement (Equation 5), i.e.,
household members must put in a 40-hour week at a job
“in town” to maintain employment or get benefits such
as insurance, sick leave, and vacation time. If we
assume that household members prefer on-farm work to
off-farm work then Equation 5 holds with equality. In
addition, we will assume that the time spent working on
the farm by the household is a function of the technol-
ogy (i.e., GM versus non-GM) used on the farm.

I, =1:(9) ©)

The maximization problem outlined in Equations 1
through 6 can be solved in order to obtain the house-
hold’s demand for on-farm household labor.

I, =1 (w,9) )

In this equation, w is a vector of input prices and g is a
GM crop vector. There are two ways to go about esti-
mating the on-farm labor demand. One is to estimate a
structural equation model, such as a profit function or a
production function. Second, one may estimate a treat-
ment effect model. Heckman (2001) discussed the
tradeoffs between estimating a structural equation and a
treatment-effect (ATE) model, which we propose to esti-
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mate. A structural model, derived from economic the-
ory, is superior to a treatment-effect model. Parameter
estimates can be used to answer a wide range of eco-
nomic questions, and provide well-defined welfare com-
parisons. However, the theoretical restrictions needed to
estimate a valid structural equation are difficult to meet.
Reziti and Ozanne (1999) surveyed literature on duality
and concluded that an overwhelming number of applied
studies reject theoretical regularity conditions. Field-
level data is generated in such a way that it will con-
found the estimation of a traditional production func-
tion. A pest infestation, for example, will reduce yield
and require more labor. An early-season flood will result
in the field being replanted later. These are plausible sit-
uations that could lead to an economically implausible
estimate—increasing labor decreases yield. Rectifying
this problem would require detailed data on the severity
and nature of random events.

In contrast to the structural model approach, an ATE
model only requires the identification of a small number
of parameters. Consequently, it can only be used to
answer a small number of research questions. The con-
ditions necessary to identify these parameters are
weaker than those required by a structural model. In
order to estimate the labor savings associated with
adopting a GM crop, we will use an ATE model—as
explained by Wooldridge (2002)—to estimate Equation
7, parameterized as

K K
In(x,) = 7,9 +Zﬁkxk+2ykgxk. (8)
k=1 k=2

The dependent variable, In(x;), is the natural logarithm
of the household labor used in crop production, while g
is a dummy variable indicating a GM crop. The remain-
der of the model is known as the control function, and x,
(k=1,2,...K) are control variables. The objective is to
estimate the ATE, y,, conditional on the control func-
tion. Additionally, the model allows for the estimation
of interactions, y , between the GM dummy variable
and the control function. Any variable that could explain
labor usage is a candidate for the control function
(Wooldridge, 2002). The household model discussed
above provides theoretical guidance as to the variables
used in the control function. The variables used as con-
trols will be discussed below. Identification of the treat-
ment effect requires that the treatment be exogenous.
Testing and correcting for endogeneity is a simple mat-
ter in a treatment-effect model, assuming that a valid
instrumental variable (1V) is available.
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If GM crops save labor and management then the
introduction of GM seed should decrease the demand
for these inputs. Due to data limitations, it is difficult to
measure the quantity or quality of management used on
a farm; hence, one can only look at how adopting a GM
crop affects on-farm labor usage. Assuming that the
farm household supplies management to the farm, then a
reduction in on-farm household labor may be inter-
preted as a reduction in management. Our objective is to
compare the amount of time spent in a GM field with
the amount of time spent in a non-GM field. This differ-
ence can be accurately identified after controlling for
other factors that may influence labor usage in the field,
such as yield, the size of the field, and cropping practice.
In addition, the amount of household labor used in the
field could vary based on farmer ability and the amount
of capital applied to the field. From there, any differ-
ences in labor could be attributed to unobserved random
events such as weather and pest pressure.

Data and Estimation

Data are from the USDA’s Agricultural Resource Man-
agement Survey (ARMS). Annual cross-section field-
level data for corn, soybeans, and cotton were collected
in 2001, 2002, and 2003, respectively. ARMS data are
collected using a stratified random sampling and, as
such, the USDA provides survey weights that can be
used to correct for the survey design.

The dependent variable—unpaid labor—is a full
accounting of the time spent working on the farm
throughout the growing season by individuals who were
not paid for their services. It does not include any form
of paid labor, such as full-time, part-time, or seasonal
workers; labor provided by custom contractors is also
excluded. It is assumed that unpaid workers are mem-
bers of the household, therefore unpaid labor can be
thought of as household labor.

Table 1 summarizes per-acre household labor by
crop, tillage practice, and the type of GM seed. Fields
planted using the no-till (NT) cropping practice are
shown in Table 1 as NT=1. Otherwise, the farmer used
some other method. The farmer may have used reduced
tillage or conventional tillage, so to avoid confusion we
will refer to non-no-till as conventional-till. Using Bt
seed is shown as Bt=1, and using HR seed is shown as
HR=1. Based on Table 1, it appears that cotton requires
more household labor than corn and soybeans. On con-
ventionally tilled cotton fields, HR technology appears
to reduce household labor. A no-till, Bt, HR field
receives 1.92 hours of household labor, while a no-till
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Table 1. Household labor per acre, by crop.
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Soybeans Corn Cotton
NT=1 NT=0 NT=1 NT=0 NT=1 NT=0

HR=1 HR=0 HR=1 HR=0 | HR=1 HR=0 HR=1 HR=0 | HR=1 HR=0 HR=1 HR=0
Bt=1 NA NA NA NA + + 2.44 1.44 + 1.92 2.04
Bt=0 0.88 0.82 1.22 1.39 + 1.46 2.34 2.57 1.66 + 2.32 4.35
+ Results suppressed by the USDA to prevent potential disclosure of confidential data.
field with no GM inputs uses 4.35 hours of household Table 2. Variable means and descriptions.
labor per acre. On conventional-till corn it appears that Description
Bt fields require more household labor. The no-till prac- Variable  Soybeans Corn  Cotton  (coding)
tice appears to save household labor in soybeans, but Unpaid 36.26 57.13  59.00 Unpaid labor
HR does not appear to have a big impact on household labor
labor. In order to comply with USDA National Agricul- HR 0.82 0.03 0.75 1if herbicide
tural Statistical Services” (NASS) confidentiality tolerant,

. . 0 otherwise
requirements, we do not present estimates that are based , _
on fewer than 30 observations. Therefore, we cannot use V' 0.41 019 023 L if no-tll

. . . 0 otherwise
simple means to reach any additional conclusions. Fur- _

) BT 0.04 0.56 1ifBt, 0
thermore, the means presented in Table 1 have only otherwise
pefein condltt:onledbon tlllllage _pra.ctlce. O“ther ff_;l;:_t(ars will Herbicide 46.23 7788 6031 Herbicide,
influence the labor allocation; a well-specified ATE active pounds of active
model is required to determine the actual impact of GM ingredient ingredient
crops on h(_)use_hol_d labor gllocation. _ _ Wage 1.37 1.37 491 Hourly wage

The objective is to estimate the ATE, y, in Equation paid to hired
8, conditional on the control function. This can be inter- labor
preted as the percentage change in labor usage. Identifi- Unpaid 17.95 16.86  19.64 Estimated
cation of the treatment effect requires that the treatment wage rate hourly wage
be exogenous. A priori, we expect that the decision to liﬁlgrto unpaid
use a GM technology is exogenous because the decision ,

. L Production 1705.71  4800.66 25735.60 Total output for
making process that could lead to endogeneity is deter- the field (bu for
mined at the farm level, and our data is field level. This corn and
belief has support in the literature; Bernard et al. (2004) soybeans, Ibs
did not find endogeneity when they studied HR soybean for cotton)
farmers in Delaware. The “treatment variables” are Farmsize 517.42  391.20 1162.42 Farm size
dummy variables in_dicating th_e adopti(_)n of Bt or HR Field size 41.41 36.07 34.67 Eield size
crops and the adoption of no-till cropping practices. A Education 0.46 0.40 0.63 Education, 1 i
priori, we expected that the coefficients on these vari- high school
ables would be negative. Interaction terms between graduate,
treatment variables are included when appropriate. For a 0 otherwise

complete description of variables used in estimation and
their means, please see Table 2.

The control variables in Equation 8 are not intended
to have any economic meaning, although some of them
may be of economic importance. Furthermore, we can
still estimate an unbiased treatment effect even if the
control variables are endogenous. The control variables
are used to condition the treatment effect on observable
characteristics (Heckman, 2001). Field size is a great
example of the importance of control variables. Obvi-
ously, a large field will require more time than a small

field; failing to account for field size would result in an
omitted variable bias. Farm size is included to control
for unobserved capital equipment; larger farms must
invest more heavily in capital equipment. Yield can
account for unobserved land quality, input usage,
weather, and managerial ability, so it is included as a
control variable. Herbicide active ingredients, measured
in pounds, can control for unobserved pest pressure. In
addition to these controls, we include the unpaid wage
rate and the wage rate—calculated by the USDA—for
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paid full-time employees. Although these last two vari-
ables—the price of the input and its substitute—are
important to include for theoretical reasons, they are
potentially endogenous variables and hence have no
meaningful interpretation in this context.?

The treatment effect, conditional on the observable
control variables, can be identified if the treatment is
exogenous (Greene, 1997). Any time production data is
used in an econometric estimation it is necessary to con-
sider the possibility of endogeneity. In the current con-
text there may be an unobserved component in the error
term that is correlated with the decision to adopt a GM
crop. Typically, one would test for endogeneity using,
for example, the Durbin-Wu-Hausman endogeneity test
(Davidson & MacKinnon, 1993). However, hypothesis
testing is confounded by the sampling procedure
(National Research Council of the National Academies,
2007). Therefore we include both OLS and IV versions
of the models. The 1V procedure was performed by run-
ning two sets of regressions. In the first set, probit mod-
els were used to predict the probability of adopting GM
crops and no-till cropping practices. In the second, pre-
dicted probabilities from the probit models were used
instead of the actual dummy variables. As such, the
interpretation in the IV model is different. Rather than a
percentage change from adopting the technology, the
coefficients should be interpreted as the change in the
dependent variable when the probability of adopting the
technology increases by 1%.

Regression models were estimated using the survey
weights supplied with the data. Whenever weighted esti-
mates are used, a robust variance estimate is necessary.
According to a recent National Academies report
(2007), the jackknife method recommended by the
USDA lacks degrees of freedom. Therefore,Huber-
White variance estimates are reasonable (National
Research Council of the National Academies, 2007).

Results

Estimation results for both OLS and 1V can be found in
Tables 3 through 5. For completeness, we include test
statistics from both the USDA’s recommended jackknife
procedure and the Huber-White estimates that are part
of the standard STATA software output when specifying

2. An early draft of this section included interactions between
the GM crop dummy variables and the control function vari-
ables, as well as state dummy variables. These variables were
either insignificant or collinear and thus dropped from the
model.
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Table 3. Soybean labor model.

oLS, oLS, 1V, v,
robust  jacknife  robust jacknife
variance variance variance variance

Variable estimates estimates estimates estimates
HR -0.145**  -0.145* -0.222*  -0.222*
(-2.323)  (-2.077) (-1.891) (-2.717)
NT -0.375***  -0.375**  -0.370* -0.37*
(-3.764)  (-2.804)  (-1.890) (-2.006)
HR*NT 0.0694 0.069 0.0703 0.07
(0.650) (0.49) (0.324) (0.407)
H active -0.0124 -0.012 -0.00553 -0.006
ingredient (-0.442) (-0.491) (-0.162) (-0.182)
Wage rate -0.263**  -0.263*** -0.261*** -0.261***
(-7.377) (-10.356) (-7.333) (-10.56)
Unpaid wage 0.332 0.332 0.336 0.336
rate (1.199)  (1.424)  (1.176)  (1.467)
Production 0.0686 0.069 0.0719 0.072
(1.318)  (1.405)  (1.261)  (1.287)
Farm size -0.114%*  -0,114***  -0.114***  -0.114***
(-5.707)  (-6.117)  (-4.949)  (-4.279)
Field size 0.694***  0.694**  0.676*** 0.676***
(9.725) (10.752)  (8.946) (10.996)
(Production)*2 0.000264 0 0.000202 0
(0.0267)  (0.012) (0.0198)  (0.008)
(Farm size)*2 -0.0297*+* -0.03** -0.0316*** -0.032**
(-2.681) (-2.357) (-2.720)  (-2.331)
(Field size)r2 0.0348 0.035 0.0339 0.034
(1.338) 1.2) (1.334) (1.035)
Education -0.0811 -0.081 -0.0726 -0.073
(-1.518)  (-1.351)  (-1.347)  (-1.349)
Constant 1.481***  1.481**  1557** 1 557***
(7.668) (6.585) (6.960) (6.119)
Observations 1880 1880 1833 1833
R-squared 0.634 0.634 0.615 0.615
F 151.0%**  151.0%*  143.9%*  143.9***

*** n<0.01, ** p<0.05, * p<0.1; t statistics in parentheses

survey weights. As the motivation behind this research
centers on HR soybeans, we will begin by discussing the
results from the soybean model (Table 3). Adopting HR
soybeans under conventional tillage reduces household-
labor by 14.5%, a result that is statistically significant at
the 5% level using the Huber-White variance estimator
and at 10% using the jackknife estimate. The HR coeffi-
cient is negative and statistically significant in the 1V
model as well, however, the interpretation of the coeffi-
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Table 4. Corn labor model.
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Table 5. Cotton labor model.

Variable
HR

NT

HR*NT

BT

NT*HR

BT*HR

Active

ingredient

Wage rate

Unpaid wage

rate

Production

Farm size

Field size

(Production)*2

(Farm size)*2

(Field size)*2

Education

Constant

Observations
R-squared

F

oLS,
robust
variance
estimates

-0.0100
(-0.0728)

-0.173%*
(-2.597)

0.0691
(0.297)

0.145
(1.314)

-0.0470
(-0.371)

0.425*
(1.998)

-0.0223
(-1.416)

-0.210%*
(-5.236)

0.108
(0.314)

0.125%+
(2.948)

-0.212%%
(-5.007)

0.617%*
(10.35)

0.0214%*
(3.913)

-0.00930
(-0.752)

-0.0264
(-1.420)

-0.0797
(-1.128)

1.746*
(1.767)

1861
0.588

87.82***

OLS,
jackknife

1V,
robust

\YA
jackknife

variance variance variance

estimates estimates estimates

-0.01
(-0.083)

-0.173*
(-2.207)

0.069
(0.229)

0.145
(0.961)

-0.047
(-0.252)

0.425
(1.345)

-0.022**
(-2.247)

-0.21%+
(-3.762)

0.108
(0.264)

0.125*+
(3.527)

-0.212%%
(-4.988)

0.617**
(13.677)

0.021%*+
(6.516)

-0.009
(-0.668)

-0.026
(-1.281)

-0.08
(-1.08)

1.746
(1.468)

1861
0.588

87.82%*

-0.0298
(-0.120)

-0.272%%
(-2.604)

-0.0643
(-0.316)

0.0418
(0.105)

0.0129
(0.0797)

0.395
(1.630)

-0.0232
(-1.299)

-0.234%*
(-7.097)

-0.0637
(-0.221)

0.0901***
(2.603)

-0.169***
(-7.409)

0.637%*
(10.63)

0.0184%+
(3.399)

-0.00295
(-0.264)

-0.0351*
(-1.845)

-0.0780
(-1.160)

2.265%*
(2.729)

1830
0.606

80.53***

-0.03
(-0.097)

-0.272*
(-1.854)

-0.064
(-0.212)

0.042
(0.138)

0.013
(0.054)

0.395
(1.132)

-0.023**
(-2.423)

-0.234%%
(-5.402)

-0.064
(-0.192)

0.09***
(7.751)

-0.169%+
(-7.395)

0.637%*
(26.56)

0.018**
(8.354)

-0.003
(-0.237)

-0.035*
(-1.766)

-0.078
(-1.115)

2.265%*
(2.372)

1830
0.606

80.53***

Variable
HR

NT

HR*NT

BT

NT*HR

BT*HR

Active

ingredient

Wage rate

Unpaid wage

rate

Production

Farm size

Field size

(Production)*2

(Farm size)*2

(Field size)*2

Education

Constant

Observations
R-squared

F

OoLS,
robust

OLS,

jackknife

1V,
robust

1V,
jackknife

variance variance variance variance
estimates estimates estimates estimates

-0.694**
(-2.022)

0.231
(0.917)

-0.426
(-1.411)

-0.825+
(-2.328)

0.611*
(1.735)

0.0481
(0.217)

-0.0346
(-0.543)

-0.319%+
(-5.251)

-0.0998
(-0.110)

0.139
(1.049)

-0.175%+
(-3.121)

0.577%*
(3.352)

0.0120
(0.938)

-0.102%+
(-3.177)

-0.0237
(-0.668)

0.142
(0.702)

2.955
(1.178)

1269
0.426

30.17**

-0.694
(-1.375)

0.231
(0.821)

-0.426
(-1.000)

-0.825
(-1.737)

0.611
(1.265)

0.048
(0.164)

-0.035
(-0.374)

-0.319%*
(-3.936)

0.1
(-0.082)

0.139
(0.665)

-0.175%
(-2.595)

0.577*
(2.409)

0.012
(0.551)

-0.102
(-1.682)

-0.024
(-0.554)

0.142
(0.464)

2.955
(0.938)

1269
0.426

30.17***

-0.862
(-1.589)

-1.799
(-1.247)

1.778
(1.163)

-0.93
(-1.184)

0.875
(1.051)

-0.041
(-0.240)

-0.062
(-0.776)

-0.313%*
(-5.847)

-0.058
(-0.0123)

0.099
(0.649)

-0.174%
(-3.115)

0.63*
(2.580)

0.008
(0.549)

-0.092
(-2.866)

-0.033
(-0.886)

0.156
(0.633)

3.193
(1.185)

1269
0.405

29.72%**

-0.862
(-1.355)

-1.799
(-1.243)

1.778
(1.166)

-0.93
(-1.009)

0.875
(0.998)

-0.041
(-0.173)

-0.062
(-0.673)

-0.313%+
(-4.02)

-0.058
(-0.05)

0.099
(0.439)

-0.174%+
(-2.987)

0.63*
(2.295)

0.008
(0.334)

-0.092
(-1.552)

-0.033
(-0.815)

0.156
(0.521)

3.193
(1.041)

1269
0.405

29.72%**

*** n<0.01, ** p<0.05, * p<0.1; t statistics in parentheses

*** n<0.01, ** p<0.05, * p<0.1; t statistics in parentheses
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cient changes. If the probability of adopting HR soy-
beans increases by 1%, then household labor decreases
by 0.22%. This result explains how the literature on HR
soybeans has not found a conclusive profit effect in spite
of widespread adoption. The result is also consistent
with Fernandez-Cornejo et al.’s (2005) findings. It
appears that farmers are substituting HR soybeans for
household labor, freeing up labor and management for
off-farm employment, leisure, or the expansion of the
farm. This result lends credence to Fernandez-Cornejo
et al.’s (2007) conclusion that small farms adopt labor-
saving technology so that they may dedicate more time
to off-farm work. Although not the primary focus of this
study, the no-till coefficient is also of interest; adopting
a no-till cropping practice, conditional on using conven-
tional soybean seeds, results in a 37.5% reduction in
household labor, a result that is statistically significant.
According to the IV version of the model, if the proba-
bility of adopting no-till increases 1% then the house-
hold labor use decreases by 0.37%, a result that is
statistically significant at the 10% level. It is tempting to
interpret the HR*NT coefficient as the labor savings
from simultaneous adoption. However, this is not the
case. One would need to first use an F-test to verify that
the HR, NT, and HR*NT coefficients are jointly signifi-
cant and then sum the coefficients. However, given the
survey design, the results of such a test are unclear
(National Research Council of the National Academies,
2007).

The results from the corn model provide an interest-
ing contrast to the soybean results. Biotechnology does
not appear to have a statistically significant impact on
household labor. Only the coefficient for stacked tech-
nology (BT*HR) is statically significant, but only in one
of the four models. The no-till coefficient in all four
models is negative and statistically significant. Concern-
ing the Bt technology, this result can easily be
explained. In the absence of Bt technology, many corn
farmers simply do not attempt to control for corn borers
(Fernandez-Cornejo & McBride, 2002). Thus, one
should not expect to see a difference in the labor usage
between Bt and non-Bt corn crops. As discussed above
the literature has demonstrated a clear welfare gain from
the adoption of Bt corn, thus it is not surprising to see
adoption of this technology in spite of the absence of a
labor savings.

Similar to the corn model, the evidence for cotton is
weak. When using an 1V method, none of the biotech-
nology coefficients is statistically significant. However,
in the OLS model, when the Huber-White robust vari-
ance estimators are used, the HR and BT coefficients are
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Table 6. Estimated household labor savings.***

Soybeans Corn Cotton
Total planted acres 517.42 391.20 1162.42

Average household 1.39 2.57 4.35
labor per acre

Average household 719.21 1005.38 5056.53
labor hours per field

HR household labor  14.50%***  1.00% 69.40%
savings

Total HR household 104.29 10.05 3509.23
labor savings

Bt household labor NA 14.50% 82.50%
savings

Total Bt household NA 145.78 4171.63
labor savings

NT household labor  37.50%*** 17.30%**"  23.10%
savings

Total NT household 269.71 173.93 1168.06

labor savings

* OLS model

** Household labor includes spouse, operator, children, and all
other unpaid labor.

*** Statistically significant at conventional levels, and robust
with respect to statistical method.

statistically significant, implying that Bt cotton may
save household labor. This result is not surprising, as
cotton growers have had a long-standing battle against
insect pests. Conventional cotton crops require frequent
spraying; Bt cotton requires less spraying. This differ-
ence amounts to an 82.5% decrease in household labor.
In addition, HR cotton also reduces household labor by
69%. This result should be viewed with caution—when
accounting for potential endogeneity the coefficient is
not significant and the method used to calculate stan-
dard errors has an impact on statistical significance.
When using the USDA’s replicate weights to calculate
jackknifed standard errors, the coefficient is not signifi-
cant, but when using the Huber-White robust estimator,
the coefficient is significant at the 5% level. This could
be due to the jacknife’s low degrees of freedom. As dis-
cussed in the literature review, Bt cotton increases profit
due to reduced pest-control cost and increased yield. If
the value of household labor was not counted in previ-
ous studies then this result implies that the true welfare
is higher.

Summary

To demonstrate the interpretation of these results, con-
sider Table 6, which shows the average number of
planted acres (i.e., the farm size), the average household
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labor per acre, and the labor savings associated with
each technology. Assume that a farmer has an average-
sized soybean farm (517.4 acres), and employs conven-
tional tillage without using HR seed. The average
amount of household labor per acre is 1.39 hours. OLS
model results indicate that complete adoption of HR
soybeans will reduce the quantity of household labor
applied by 14.5%, for a total of 94.5 hours, or about 10,
9.5-hour days throughout the growing season. A result
that is both statistically significant and economically
significant. A part-time farmer can use this time to work
at his/her off-farm job. It is difficult to place a value on
this time, as it could be used for leisure or to generate
off-farm income. The same farm could save 270 hours
of household labor by adopting no-till practices. The
average corn farmer can reduce household labor by 173
hours by adopting no-till practices, but does not seem to
realize a labor savings from adopting biotechnology.
The average cotton farmer could potentially reduce
household labor hours by an economically significant
amount—3,509 hours from adopting HR seed and 4,171
hours by adopting Bt seed. However, the cotton results
should be viewed with a great deal of skepticism, as the
statistical significance of the coefficients depends highly
upon the estimation method and the method used to
compute standard errors.

This study is the first known estimate of the labor
savings associated with GM crops. We assume that all
unpaid labor is household labor, and use field-level data
to estimate an ATE model. We find strong evidence that
HR technology can generate a significant savings in
household labor for soybeans, weak evidence of house-
hold labor savings in cotton and no evidence of house-
hold labor savings in corn. Adopting HR soybeans
reduces labor usage, on average, by 14.5%. This result
fills a significant gap in the literature, and explains why
soybean growers have readily adopted HR technology
in spite of an apparent lack of a welfare gain. Addition-
ally, this result points us in a different direction for
future research on the farm-level impacts of biotechnol-
ogy. It is important to properly value unpaid labor, and
one must consider how these technologies affect non-
farming activities such as leisure and off-farm employ-
ment.
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